
Phase 1b/2 study of ompenaclid, a first-in-class oral inhibitor of the creatine transporter SLC6A8, in combination with FOLFIRI and bevacizumab in RAS-mutated second-line advanced/metastatic colorectal cancer

A. Hendifar¹, D. Spigel², A. Basu-Mallick³, D. Richards⁴, M. Fakih⁵, J. Boles⁶, M. Gupta⁷, K. Chung⁸, A. Cohn⁹, A. Espinosa¹⁰, K. Hourdequin¹¹, K. Johnson¹², J. Misleh¹⁴, S. Mukkamala¹⁵, A. Paulson¹⁶, S. Ratnam¹⁷, S. Shao¹⁸, R. Wasserman¹⁹, L. Rosen²⁰

Introduction

- Colorectal cancer (CRC) is the 2nd most common cause of cancer death, causing almost 1 million deaths/year.¹
- Up to 45% of patients with metastatic CRC (mCRC) have RAS-mutant (RAS-mut) tumors.²
- SLC6A8, which imports creatine and phosphocreatine (PCr), is upregulated in mCRC cells to aid survival under hypoxia
- Ompenaclid (RGX-202-01) is a first-in-class oral SLC6A8 inhibitor that reduces intracellular PCr and adenosine triphosphate (ATP) leading to tumor cell apoptosis (Fig 1).³
- Targeting the metabolic dependencies of RAS-mut mCRC broadens the therapeutic approach, regardless of a specific RAS pathway mutation.
- On target resistance to SLC6A8 has not been observed with ompenaclid in preclinical models.
- In animal models, ompenaclid monotherapy demonstrated robust anti-tumor activity and exhibited synergistic efficacy with 5-fluorouracil (5-FU).⁴
- In patients with RAS-mut mCRC, ompenaclid monotherapy demonstrated anti-tumor activity with a favorable safety profile without dose-limiting toxicities (DLTs).⁵
- Clinical data suggest robust and maximal pharmacodynamic effects are achieved with ompenaclid \geq 2400 mg twice daily (BID).^{5,6}

Fig 1. Ompenaclid mechanism of action

These pathways generate critical building blocks upon which RAS-mut tumors depend for growth and survival. Unlike other RAS-mut targeting agents, ompenaclid's mechanism of action interferes with multiple downstream biosynthetic pathways

- Preliminary efficacy data suggest that ompenaclid has activity in RAS-mut mCRC regardless of the specific mutation.⁶
- FOLFIRI/bevacizumab (BEV) is a standard-of-care (SOC) 2nd line regimen for mCRC, which provides overall response rate (ORR) of ~15%, median progression-free survival (mPFS) of ~5-6 months and median overall survival (mOS) of ~11-18 months.7
- The aims of this phase 1b/2 study are to evaluate safety. pharmacodynamics and pharmacokinetics (PK/PD) and efficacy of ompenaclid plus SOC (FOLFIRI/BEV) in 2nd line RAS-mut mCRC

Methods

Key eligibility criteria

- Advanced (adv) or metastatic RAS-mut CRC; wild type (WT) patients were also initially enrolled.
- Measurable disease by Response Evaluation Criteria in Solid Tumour (RECIST) version 1.1, Eastern Cooperative Oncology Group (ECOG) ≤1.
- Demonstrated progression with an oxaliplatin-based regimen.
- Only 1 prior line of therapy for adv/mCRC with the following exception:
 - patients were eligible if they had recurrence within 12 months of completion of an oxaliplatin-based adjuvant therapy and no treatment for adv/mCRC.

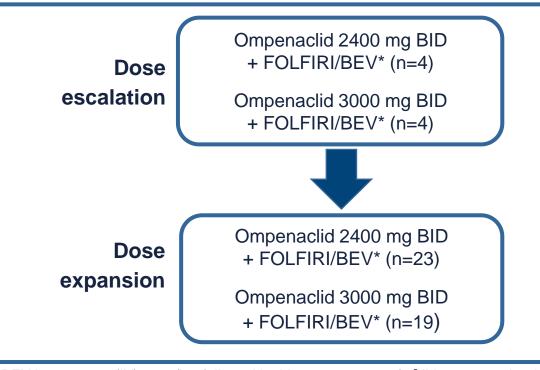
References

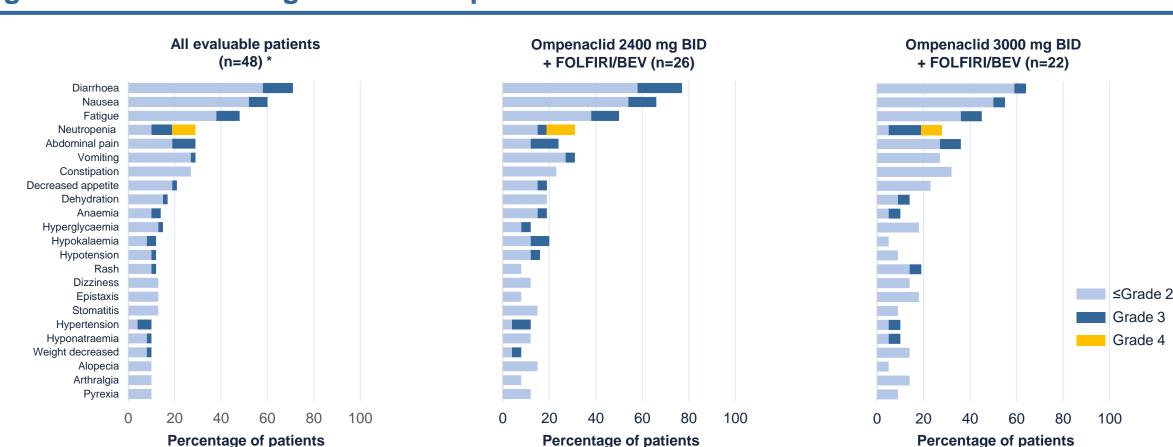
1. WHO/International Agency for Research on Cancer www.iarc.who.int/cancertype/colorectal-cancer 2. Jones et al. Br J Cancer 116, 923-929 (2017). 3. Loo et al. Cell 160, 393-406 (2015). 4. Kurth et al. Sci Adv 7 (2021). 5. Bendell et al. J Clin Oncol 38(15) 2020 Supple 3504. 6. Hendifar et al. J Clin Oncol 40(16) 2022 Suppl 3579. 7. Bennouna et al. Lancet Oncol.14, 29-37 (2013).

Author affiliations:

written permission of the authors.

1. Cedars-Sinai Medical Center, Los Angeles, CA; 2. Sarah Cannon Research Institute-Cancer Centre, Nashville, TN; 3. Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA; 4. Texas Oncology - Northeast Texas, Tyler, TX; 5. City of Hope Comprehensive Cancer Center, Duarte, CA; 6. UNC REX Healthcare, Raleigh, NC; 7. Sansom Clinic, Santa Barbara, CA; 8. Prisma Health, Greenville, SC; 9. Rocky Mountain Cancer Centers US Oncology Network, Denver, CO; 10. Arizona Oncology Associates, Prescott Valley, AZ; 11. Dartmouth Hitchcock Medical Center, Hanover, NH; 12. Sharp Healthcare, San Diego, CA; 13. Nebraska Cancer Specialists, Omaha, NE; 14. Medical Oncology Hematology Consultants, Newark, DE: 15. Arizona Oncology, Tucson, AZ; 16. Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas, TX; 17. Texas Oncology, McAllen, TX; 18. Compass Oncology, Portland, OR; 19. Inspirna, New York, NY; 20. Jonsson Comprehensive Cancer Center, University of California - Los Angeles, Los Angeles, CA, USA.

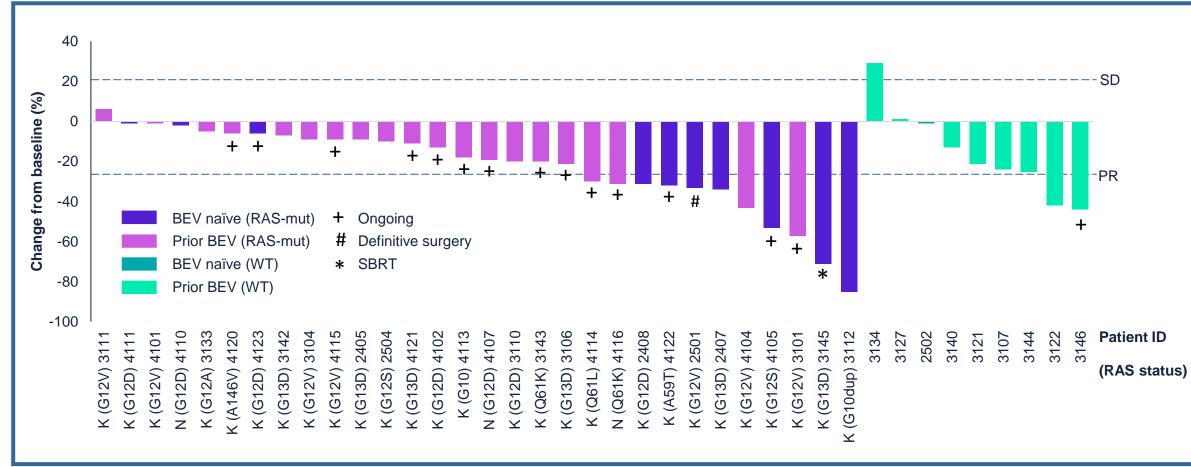

FPN: 646P. Study sponsored by Inspirna, Inc. ClinicalTrials.gov: NCT03597581. A. Hendifar has no conflict of interest to declare. Contact: and rew.hendifar@schs.org Copies of this poster obtained through QR and/or text key codes are for personal use only and may not be reproduced without


Table 1. Baseline characteristics

RAS status (n) Median age, years (range)		RAS-mut (n=41)	WT (n=9)
		58 (43-82)	63 (32-8
Race, n (%)	White	32 (78)	6 (67)
	African American	7 (17)	1 (11)
	Asian	1 (2)	0
	Not reported / other	1 (2)	2 (22)
Sex, n (%)	Male	25 (61)	6 (67)
	Female	16 (39)	3 (33)
ECOG, n (%)	0	20 (49)	4 (44)
	1	21 (51)	5 (56)
≥ 2 metastatic organ sites, n (%)		34 (83)	9 (100)
Prior therapies, n (%)	Oxaliplatin + 5-FU	41 (100)	9 (100)
	BEV	28 (68)	8 (89)

Fig 2. Treatment cohorts

*BEV intravenous (IV) 5 mg/kg, followed by irinotecan 180 mg/m² IV concurrently with folinic acid 400 mg/m² IV, followed by 5-FU 2400 mg/m² IV over 46 hours on days 1 and 15 of each 28-day cycle.



Results

*Includes all patients who have discontinued study treatment and patients with study treatment ongoing who have completed ≥ 1 cycle with AE data entered. Data cut-off 18 Sep 2023.

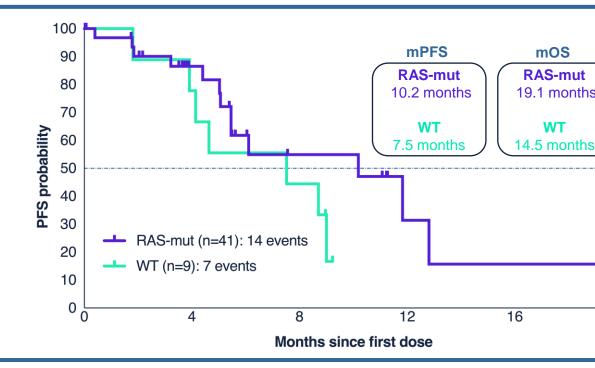
- In the Dose Escalation Phase, there were no DLTs observed for either the 2400 mg BID or 3000 mg BID dose with the combination.
- The most common Grade ≤ 2 TEAEs were diarrhea (58%) and nausea (52%).
- The most frequent Grade \geq 3 TEAEs were neutropenia (18%), diarrhea (13%), fatigue (10%) and abdominal pain (10%).
- The only Grade 5 TEAE was 1 patient (2% of total patients) with an intestinal perforation, deemed related to BEV.
- At the evaluated dose levels, ompenaclid added to FOLFIRI/BEV was well tolerated.

Percentage change from baseline of tumors in evaluable patients. Graph shows patient RAS status (N=NRAS, K=KRAS) and best overall response after ompenaclid + FOLFIRI/BEV treatment. Data cut-off 18 Sep 2023; open database.

Table 2. Best response

• Preferential activity in RAS-mut vs WT is consistent with preclinical and Phase 1 data.

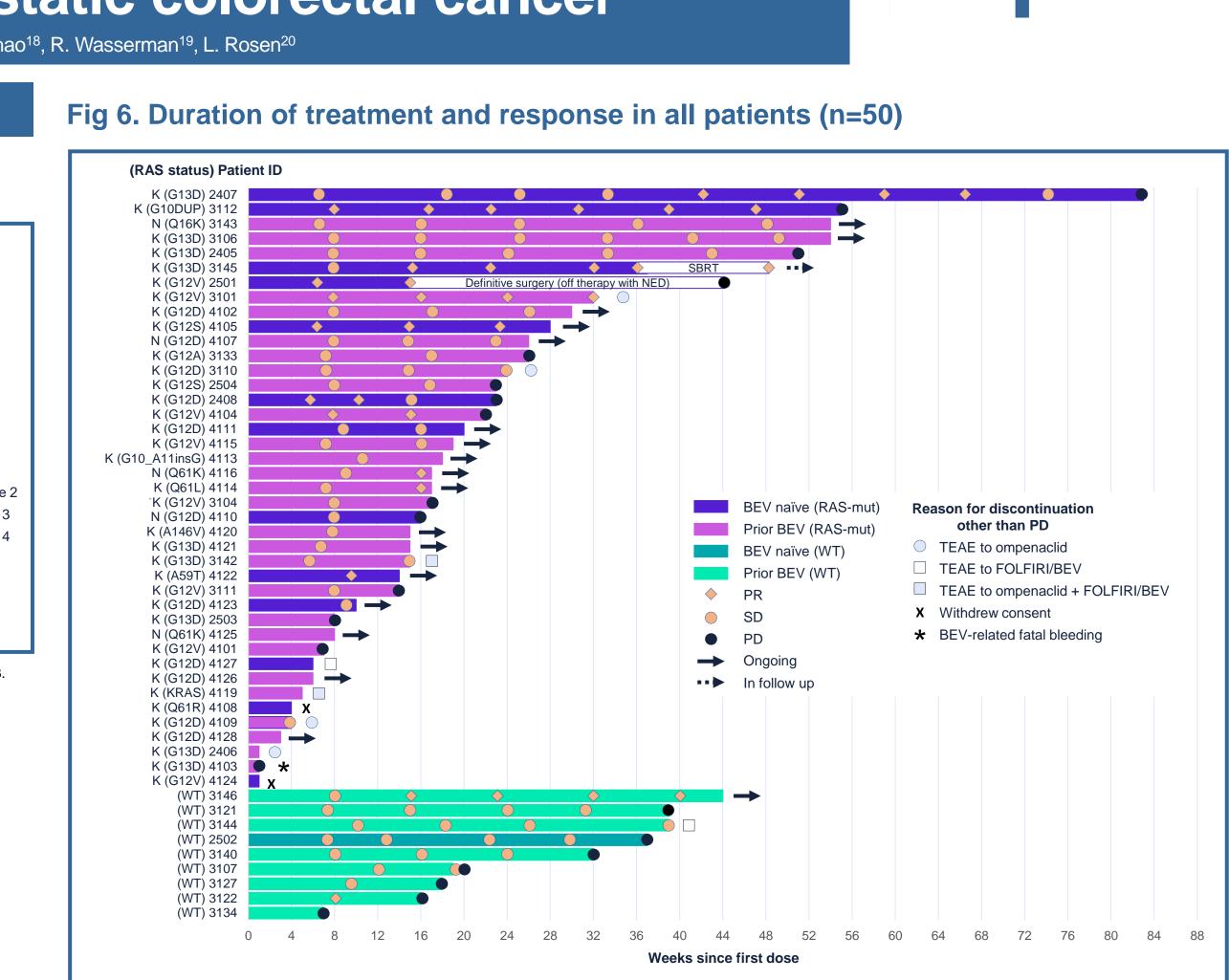
RAS status (evaluable patients)	RAS-mut (n=30)	WT (n=9)
PR , n (%)	11 (37)	2 (22)
Confirmed PR, n	8*	1*
Unconfirmed PR, n	3**	1†
SD , n (%)	19 (63)	6 (67)
PD , n (%)	0 (0)	1 (11)


Patients were evaluable for RECIST 1.1 response if they completed at least one treatment cycle and had at least one follow-up scan for RECIST assessment.

* Response confirmed by a follow-up scan. ** One PR scan and therapy continues with next scans pending. [†] One PR scan and then therapy discontinued.

Summary: Total enrolled patients: 50 = 41 RAS-mut (30 evaluable, 8 not evaluable for ORR, 3 patients enrolled pending 1st scans) + 9 WT (all evaluable).

Fig 5. PFS in RAS-mut vs WT mCRC


• Ompenaclid + SOC increased PFS and OS in RAS-mut vs WT mCRC.

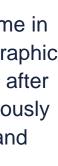
PFS analysis included all patients enrolled (n=50). PFS data are not yet final as of the cut-off date 18 Sep 2023 due to continuing patient follow-up and the limited number of PD events.

. ·85) -_____ . -

Safety Fig 3. TEAEs occurring in \geq 10% of patients

Graph shows patient RAS status (N=NRAS, K=KRAS). Data cut-off 18 Sep 2023; open database, data subject to change

Summary of efficacy


- Patients with RAS-mut mCRC experienced durable clinical benefit with an ORR of 37% and mPFS of 10.2 months.
- Clinical benefit (PRs and durable SDs) was observed in patients with diverse KRAS and NRAS mutations.
- Patients with WT mCRC had an ORR of 22% and a mPFS of 7.5 months.
- Patients not previously treated with BEV experienced a higher response rate.
- ORR and mPFS observed to date in patients with RASmut tumors clearly exceed that expected with SOC FOLFIRI/BEV alone in 2nd line mCRC.
- Tumor regressions generally deepened over time in patients with RAS-mut tumors, with first radiographic evidence of PR appearing as late as 40 weeks after initiation of study therapy, consistent with previously presented ompenaclid monotherapy Phase 1 and preclinical efficacy data.^{4,5}

PK/PD

• Systemic exposure was comparable with both doses with up to a x48 increase in urine creatine, suggesting robust target inhibition.⁶

Conclusion

- Ompenaclid plus FOLFIRI/BEV provided encouraging efficacy and induced potent inhibition of SLC6A8.
- Treatment with ompenaclid resulted in clinical benefit, with ORR and PFS exceeding that of 2nd line SOC in RAS-mutant mCRC.
- The overall safety profile is similar to SOC and other anti-angiogenic combinations in 2nd line patients with mCRC.
- Preferential activity in patients with RASmutant mCRC is consistent with preclinical and Phase 1 data.
- Ompenaclid represents a novel approach to target pan-RAS-mutant mCRC, a population with high unmet medical need.
- An ongoing Phase 2 blinded randomized placebo-controlled trial will further explore the safety and efficacy of the combination of ompenaclid with FOLFIRI/BEV in 2nd line RAS-mutant mCRC and will include a subgroup analysis based on usage of BEV in the 1st line setting.

Inspirnd

