Phase 1b study of ompenaclid (RGX-202-01), a first-in-class oral inhibitor of the creatine transporter SLC6A8, in combination with FOLFIRI and bevacizumab in RAS-mutated second-line advanced/metastatic colorectal cancer – updated results

A. Hendifar¹, J. Gong¹, D. Spigel², A. Basu-Mallick³, A. Espinosa⁴, J. Misleh⁵, D. Richards⁶, J. Boles⁷, M. Fakih⁸, A. Paulson⁹, K. Chung¹⁰, A. Cohn¹¹, M. Gupta¹², K. Johnson¹³, N. Bechar¹⁴, K. Hoffman¹⁴, S. Spector¹⁴, M. Szarek¹⁴, Wasserman¹⁴, L. Rosen¹⁵

Introduction

- RAS-mutated (RAS-mut) tumors are present in up to 45% of patients with metastatic colorectal cancer (mCRC).¹
- mCRC cell survival is aided by the upregulation of creatine kinase B and the creatine transporter SLC6A8.²
- Ompenaclid (RGX-202-01) is an oral SLC6A8 inhibitor that reduces intracellular phosphocreatine (PCr) and adenosine triphosphate (ATP) pools, inducing tumor cell apoptosis (Figure 1).³
- In animal models, ompenaclid plus 5-fluorouracil (5-FU) exhibited synergistic anti-tumor efficacy.³
- In patients with RAS-mut mCRC, ompenaclid monotherapy exhibited anti-tumor activity, a favorable safety profile and no dose-limiting toxicities.⁴

Figure 1. Ompenaclid mechanism of action

- Clinical data indicate that ompenaclid \geq 2400 mg twice daily (BID) provides robust and maximal pharmacodynamic effects.^{4,5}
- Ompenaclid has activity in RAS-mut mCRC regardless of the specific mutation.⁵
- In RAS-mut mCRC, 2nd-line FOLFIRI/bevacizumab (BEV) has an overall response rate (ORR) of ~15%, median progression-free survival (mPFS) of ~5–6 months and median overall survival (mOS) of ~11–18 months.⁶
- The aims of this Phase 1b study are to evaluate efficacy and safety of standard of care (SOC) (FOLFIRI/BEV) plus ompenaclid as 2nd-line therapy in patients with RASmut mCRC.

PCr = phosphocreatine

By depleting intracellular ATP levels, ompenaclid inhibits multiple pathways, including pyrimidine synthesis and fatty acid metabolism. These pathways generate critical building blocks upon which RAS-mut tumors depend for growth and survival.7 Unlike RAS-mut targeting agents, ompenaclid's mechanism of action interferes with multiple downstream biosynthetic pathways.

Methods

Key eligibility criteria

- RAS-mut advanced/mCRC; wild type (WT) patients were also initially enrolled.
- Measurable disease by Response Evaluation Criteria in Solid Tumour (RECIST) version 1.1, Eastern Cooperative Oncology Group (ECOG) ≤ 1 .
- Demonstrated progression with an oxaliplatin-based regimen
- Only 1 prior line of therapy for advanced/mCRC with the following exception:
- Patients were eligible if they had recurrence within 12 months of completion of an oxaliplatin-based adjuvant therapy and no treatment for advanced/mCRC.
- Adequate organ function.

Table 1. Baseline characteristics

RAS status		RAS-mut (n=46)	WT (n=9
Median age, years (range)		58 (31–82)	63 (32–
Race, n (%)	White	36 (78)	6 (6 ⁻
	African American	8 (17)	1 (1 [.]
	Asian	1 (2)	0
	Not reported / other	1 (2)	2 (22
Sex, n (%)	Male	27 (59)	6 (6
	Female	19 (41)	3 (33
ECOG, n (%)	0	23 (50)	4 (44
	1	23 (50)	5 (50
≥ 2 metastatic organ sites, n (%)		38 (83)	9 (100
Prior therapies, n (%)	Oxaliplatin + 5-FU	46 (100)	9 (10
	Bevacizumab	30 (65)	8 (8

Study treatment

- All patients received ompenaclid (2400 or 3000 mg BID) in combination with FOLFIRI/BEV:
- BEV intravenous (IV) 5 mg/kg, followed by irinotecan 180 mg/m² IV concurrently with folinic acid 400 mg/m² IV, followed by 5-FU 2400 mg/m² IV over 46 hours on Days 1 and 15 of each 28-day cycle.

References

1. Jones et al. Br J Cancer 116, 923-929 (2017). 2. Loo et al. Cell 160, 393-406 (2015). 3. Kurth et al. Sci Adv 7 (2021). 4. Bendell et al. J Clin Oncol 38(15) 2020 Suppl 3504. 5. Hendifar et al. J Clin Oncol 40(16) 2022 Suppl 3579. 6. Fakih et al. Oncologist 27(8), 663-674 (2022). 7. Mukhopadhyay et al. Nat Cancer 2(3) 2021. Author affiliations

1. Cedars-Sinai Medical Center, Los Angeles, CA; 2. Sarah Cannon Research Institute / Tennessee Oncology, Nashville, TN; 3. Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA; 4. Arizona Oncology Associates, Prescott Valley, AZ; 5. Medical Oncology Hematology Consultants, Newark, DE; 6. Texas Oncology - Northeast Texas, Tyler, TX; 7. UNC REX Healthcare, Raleigh, NC; 8. City of Hope Comprehensive Cancer Center, Duarte, CA; 9. Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas, TX; 10. Prisma Health System - Upstate - GHS Cancer Institute, Greenville, SC; 11. Rocky Mountain Cancer Center, Denver, CO; 12. Sansum Clinic, Santa Barbara, CA; 13. Sharp Healthcare, Chula Vista, CA; 14. Inspirna, Inc., Long Island City, NY, USA; 15. Jonsson Comprehensive Cancer Center, University of California - Los Angeles, Los Angeles, CA, USA.

Percentage change from baseline of tumors in evaluable patients. Data cut-off 4 Jun 2024; open database.

Summary of efficacy

- Patients with RAS-mut mCRC experienced durable clinical benefit with an ORR of 41%, duration of response of 9.4 months and mPFS of 11.0 months.
- Clinical benefit (PRs and durable SDs) was observed in patients with diverse KRAS and NRAS mutations.
- Patients with WT mCRC had an ORR of 22%, duration of response of 5.7 months and mPFS of 8.7 months.
- BEV-naïve patients with RAS-mut mCRC experienced a higher response rate of 57% (8 of 14 patients).
- ORR and mPFS observed to date in patients with RAS-mut tumors clearly exceed that expected with SOC FOLFIRI/BEV alone in 2nd-line mCRC.
- Median time to response in RAS-mut tumors was 2.9 months. Tumor regressions generally deepened over time in patients with RAS-mut tumors.
- First radiographic evidence of PR appearing as late as 40 weeks after initiation of study therapy.

Figure 3. Duration of treatment and response in all patients (n=55)

Data cut-off 4 Jun 2024; open database.

Table 2. Best response

 Preferential activity in RAS-mut vs WT is consistent with preclinical and Phase 1 data.

RAS status (evaluable patients)	RAS-mut (n=34)	WT (n=9)
PR , n (%)	14 (41)	2 (22)
SD , n (%)	20 (59)	6 (67)
PD , n (%)	0 (0)	1 (11)

Patients were evaluable for RECIST 1.1 response if they completed at least one treatment cycle and had at least one follow-up scan for RECIST assessment.

55 enrolled patients: 46 RAS-mut mCRC (34 evaluable and 12 not evaluable [6 dropped out without a scan, 4 ongoing and yet to be scanned, 2 treated with insufficient dose]) and 9 WT mCRC (all evaluable).

• The response rate in the RAS-mut ITT patient population was 30%.

RAS-mut vs WT mCRC.

date 4 Jun 2024 due to continuing patient follow-up and the limited number of PD events.

Safety Figure 5. TEAEs occurring in \geq 10% of patients

Data cut-off 4 Jun 2024.

- The most common Grade ≤ 2 TEAEs were diarrhea (56%) and nausea (51%).
- The most frequent Grade ≥ 3 TEAEs were neutropenia (20%), diarrhea (11%) and nausea (11%).
- Ompenaclid plus FOLFIRI/BEV provided promising efficacy
- Treatment with ompenaclid resulted in clinical benefit, with durable ORR and PFS exceeding that of 2nd-line SOC in RAS-mut mCRC.
- The overall safety profile is similar to SOC and other anti-angiogenic combinations in 2nd-line patients with mCRC.
- Ompenaclid has activity in RAS-mut mCRC regardless of the specific mutation.⁵

- The only Grade 5 TEAE was 1 patient with an intestinal perforation, deemed related to BEV.
- At the evaluated dose levels, ompenaclid added to FOLFIRI/BEV was well tolerated.

Conclusion

NCT03597581

- Preferential activity in patients with RAS-mut mCRC is consistent with preclinical and Phase 1 data.
- Ompenaclid represents a novel approach to target pan-RAS-mut mCRC, a population with high unmet medical need.
- An ongoing randomized Phase 2 blinded placebo-controlled trial will further explore the safety and efficacy of the combination of ompenaclid with FOLFIRI/BEV in 2nd-line RASmut mCRC.

Study sponsored by Inspirna, Inc A. Hendifar has no conflict of interest to declare. Contact: <u>andrew.hendifar@schs.org</u>

Copies of this poster obtained through QR and/or text key codes are for personal use only and may not be reproduced without written permission of the authors.