Phase 1 monotherapy dose escalation of RGX-202, a first-in-class oral inhibitor of the SLC6a8/CKB pathway, in patients with advanced gastrointestinal (GI) solid tumors

Authors: Johanna C. Bendell¹, James Strauss², Marwan Fakih³, Autumn J. McRee⁴, Andrew E. Hendifar⁵, Lee S. Rosen⁶, Andrea Cercek⁷, Eric K. Rowinsky⁸, Michael Szarek⁸, Foster Gonsalves⁸, Isabel Kurth⁸, Celia Andreu⁸, Robert W. Busby⁸, Scott Spector⁸, David M. Darst⁸, Masoud Tavazoie⁸, Syed Raza⁸, Narayan Lebaka⁸, Robert Wasserman⁸, Sohail S. Tavazoie⁹, Yelena Y. Janjigian⁷

¹Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN;²Mary Crowley Cancer Research, Dallas, TX;³City of Hope Comprehensive Cancer Center, Duarte, CA;⁴University of North Carolina, Chapel Hill, NC;⁵Cedars-Sinai Medical Center, Los Angeles, CA;⁶Jonsson Comprehensive Cancer Center, University of California, Los Angeles; ⁷Weill-Cornell Medical Center and Memorial Sloan Kettering Cancer Center, New York, NY; ⁸RGENIX Inc., New York, NY; ⁹The Rockefeller University, New York, NY

#ASCO20 Slides are the property of the author permission required for reuse.

RGX-202 is a first-in-class oral inhibitor of the SLC6a8/CKB pathway

- Approximately 65% of colorectal cancer patients have Creatine Kinase-B (CKB) expressing tumors¹
- CKB⁺ cancer cells rely on phospho-creatine to generate ATP to support cell survival in the metastatic niche²
- Phospho-creatine is imported into CKB⁺ cancer cells via the creatine transporter SLC6a8²
- RGX-202 is an oral small molecule inhibitor of SLC6a8 that induces cancer cell apoptosis³
- KRAS-driven metabolic demand confers susceptibility to RGX-202 in KRAS mutant CRC

¹RGENIX unpublished data ²Loo JM et al. *Cell*. 2015 Jan 29;160(3):393-406 ³Kurth I et al. *AACR* 2018

#ASCO20 Slides are the property of the author, permission required for reuse.

RGX-202 has broad activity across KRAS subtypes in CKB⁺ CRC models

- RGX-202 has single agent activity in CKB⁺ human CRC xenograft, PDX, and murine syngeneic models¹
- Activity is observed across KRAS subtypes (figure on right)
- RGX-202 enhances the activity of chemotherapy (5FU/irinotecan) in murine models¹

RGX-202 *in vivo* activity in CKB⁺ human CRC xenografts and PDX models

Tumor growth measured versus control (negative values correspond to tumor growth inhibition). PDX experiments conducted by Crown Biosciences. CKB⁺ as defined by \geq 5% CKB TPS (tumor IHC).

¹Kurth et al. AACR (2018)

#ASCO20 Slides are the property of the author permission required for reuse.

Study Design

- Standard 3 + 3 Dose Escalation
- Starting Dose was 600mg PO BID
- Tumor measurements and disease response assessments RECIST 1.1
 - to be performed approximately every 8 weeks (q2cycles)
 - at week 24, may be done every 16 weeks thereafter
- DLT period of assessment through Cycle 1 completion (28 days)

Phase 1 Dose Escalation Objectives

- Primary safety objective; identify the maximum tolerated dose (MTD)
 - or the maximum tested dose without multiple dose-limiting toxicities (DLTs)
- Primary efficacy objective; estimate the antitumor activity by RECIST 1.1
- Secondary objectives; evaluate the pharmacokinetic (PK) profile and potential metabolites.
- Exploratory Objectives:
 - Evaluate the tumor expression of CKB and other creatine metabolism markers
 - Evaluate pharmacodynamic markers including creatine, creatinine, and guanidinoacetate (GAA),

Key Inclusion and Exclusion Criteria

Inclusion Criteria

- Malignant gastrointestinal (GI) tumor of adenocarcinoma or poorly differentiated histology
- Resistant to or relapsed following available standard systemic therapy
- Metastatic or locally advanced and unresectable disease
- The patient is \geq 18 years old.
- The patient has an ECOG PS of ≤ 1
- Patient selection was not performed based on CKB expression

Exclusion Criteria

- Persistent clinically significant toxicities (Grade ≥2) from previous anticancer therapy
- Prior Therapy
 - Treatment with chemotherapy, external-beam radiation, or other systemic anticancer therapy within 14 days prior to study therapy administration.
 - Treatment with an investigational systemic anticancer agent within 5 half-lives.

Overview of Dose Escalation and Enrollment by Cohort

#ASCO20 Slides are the property of the author, permission required for reuse.

Patient Demographics

Demographics Summary				
Total patients enrolled		17		
Tumor types	colorectal (13), par	ncreatic (4)		
Age range years, (median)		30-77 (56)		
Male, n (%)		6 (35.3%)		
Female, n (%)		11 (64.7%)		
ECOG performance, n (%)				
0		5 (29.4%)		
1		12 (70.6%)		
Number of prior lines of therapy, r	າ (%)			
2-3		5 (29.4%)		
> 3		12 (70.6%)		
Prior Therapies				
FOLFIRI		12 (70.6%)		
FOLFOX		11 (64.7%)		
FOLFIRINOX		4 (23.5%)		
Bevacizumab		11 (64.7%)		

Tumor Molecular Status

RAS mutation n (%)	
Yes	10 (58.8%)
No (wildtype)	2 (11.8%)
Unknown	5 (29.4%)
BRAF mutation n (%)	
Yes	0 (0.0%)
No (wildtype)	7 (41.2%)
Unknown	10 (58.8%)
MSI-status n (%)	
MSI-H	0 (0.0%)
MSS or MSI-L	11 (64.7%)
Unknown	6 (35.3%)

#ASCO20 Slides are the property of the author, permission required for reuse.

Summary of RGX-202 Related Adverse Events (AEs)

AE/Cohort	AL	.L	600 m	g BID	1200	mg BID	2400 m	g BID	3600 n	ng BID
Number of patients	17		3		4		5		5	
Grade	≤2	3	≤2	3	≤2	3	≤2	3	≤2	3
Nausea	7 (41%)	1 (6%)				1 (25%)	2 (40%)		5 (100%)	
Vomiting	6 (35%)	1 (6%)			1 (25%)	1 (25%)	1 (20%)		4 (80%)	
Diarrhoea	5 (29%)		1 (33%)		1 (25%)		1 (20%)		2 (40%)	
Decreased appetite	4 (23%)				1 (25%)		1 (20%)		2 (40%)	
Fatigue	4 (23%)				1 (25%)				3 (60%)	
Blood alkaline phosphatase increased	2 (12%)								2 (40%)	
Muscle spasms	2 (12%)						1 (20%)		1 (20%)	
Weight decreased	2 (12%)						1 (20%)		1 (20%)	
Lymphocyte count decreased		1 (6%)								1 (20%)

- The majority (69.8%) of RGX-202 related AEs were Grade 1, with the most common being nausea and vomiting
- Grade 1-2 RGX-202 Related AEs are shown if they occurred in at least 2 patients (all Grade 3 AEs are shown)
- There were no RGX-202 related grade 4 or 5 AEs
- No DLTs were observed

RGX-202 was well tolerated and its monotherapy AE profile supports combinability with chemotherapy

#ASCO20 Slides are the property of the author, permission required for reuse.

RGX-202 Pharmacokinetics (PK)

•A greater-than dose proportional increase in drug exposure was observed across dose cohorts

- • $T_{1/2}$ range of 7-11 hours across dose cohorts
- •Renal excretion is the major mode of RGX-202 elimination
- Projected efficacious exposure based on animal models is achieved at doses ≥ 2,400mg BID

Slides are the property of the author permission required for reuse.

PRESENTED AT

Dose	Mean AUC₀.t (ng*h/mL)	Mean Estimated AUC ₀₋₂₄ (ng-hr/mL)	T_{1/2} (h)	Mean Cmax (ng/mL)
600mg BID	7,850	15,700	11	1,400
1200mg BID	22,600	45,200	9	4,790
2400mg BID	82,400	164,800	8	26,800
3600mg BID	117,000	241,097	7	47,660

RGX-202 Pharmacodynamics (PD)

- •Inhibition of the creatine transporter SLC6a8 by RGX-202 results in extracellular creatine accumulation, with subsequent renal excretion of excess creatine
- •Therefore, an increase in urine creatine levels is a relevant pharmacodynamic marker of RGX-202 activity
- •Urine creatine levels showed a statistically significant positive correlation with systemic exposure to RGX-202 as measured in the first cycle of treatment (fig. A)
- Increased urine creatine was observed across all dose cohorts and was significant in cohorts dosed with ≥ 2400mg BID (fig. B)

#ASCO20 Slides are the property of the auth permission required for reuse.

Efficacy

Summary				
Total patients evaluable for response*	10	colorectal (10); KRAS mutant (5), KRAS WT/unknown (5)		
Best Response by RECIST 1.1				
Partial Response (PR)	1 (10%)	KRAS ^{G12V}		
Stable Disease (SD)	3 (30%)	KRAS ^{G13D} (2) KRAS ^{WT} (1)		
Progressive Disease (PD)	6 (60%)			
Overall Response Rate (ORR)	10%	ORR 20% for KRAS mutant; ORR 0% for KRAS WT/unknown		
Disease control Rate (DCR; PR+SD)	40%	DCR 60% for KRAS mutant; DCR 20% for KRAS WT/unknown		

*Patients were evaluable for response if they had measurable disease, received at least one cycle of RGX-202 therapy, and had at least one follow up scan. Data cut-off 04/29/20 (open database).

#ASCO20 Slides are the property of the author, permission required for reuse.

Clinical Activity Observed in KRAS mutant CRC Patients

Duration of treatment in all evaluable patients

*Patients were evaluable for response if they had measurable disease, received at least one cycle of RGX-202 therapy, and had at least one follow up scan. Data cut-off 04/29/20 (open database).

#ASCO20 Slides are the property of the author, permission required for reuse.

Clinical Activity Observed in KRAS mutant CRC Patients (cont'd)

- Confirmed PR observed in 55 year-old woman with KRAS^{G12V} mutant (MSS) colon cancer
 - Patient had 6 prior lines of therapies including regimens containing 5-FU, oxaliplatin, irinotecan, bevacizumab, capecitabine, and atezolizumab
 - Scan at 16 weeks showed PR (confirmed PR at 24 weeks with 32% reduction in target lesion)
 - Week 32 scan with a 48% tumor regression, patient then had PD on Week 40 (end of cycle 10 scan)
 - Baseline and 24 week scan shown below with target lesion dimensions indicated by radiologist

#ASCO20 Slides are the property of the author, permission required for reuse.

Summary and Future Development

Monotherapy Dose Escalation

- Well tolerated agent that supports combinability with chemotherapy
- Target PK and PD effects demonstrated at ≥ 2400 mg PO BID dose
- Efficacy signal detected in KRAS mutant CRC in higher dose cohorts

Combination Dose Escalation with FOLFIRI ongoing

- Last cohort enrolling (1800, 2400, and 3000 mg PO BID of RGX-202 + standard dose FOLFIRI)
- No DLTs observed to date
- Prolonged Disease Control (≥ 16 weeks) observed in 4/5 (80%) of evaluable CRC patients treated to date*

• Phase 1b/2 biomarker-directed expansion with FOLFIRI in CRC

- Phase 1b/2 expansion planned in 3rd line advanced CRC
- Patient selection will be based on CKB biomarker positivity (≥ 5% TPS by tumor IHC)

Acknowledgements

The authors would like to thank the participating patients, their families and caregivers, the investigators, and the clinical study staff.

#ASCO20 Slides are the property of the author, permission required for reuse.